Current recording from sensory cilia of olfactory receptor cells in situ. I. The neuronal response to cyclic nucleotides
نویسندگان
چکیده
The olfactory mucosa of the frog was isolated, folded (the outer, ciliated side faced outward), and separately superfused with Ringers solution on each side. A small number of sensory cilia (one to three) were pulled into the orifice of a patch pipette and current was recorded from them. Fast bipolar current transients, indicating the generation of action potentials by the receptor cells, were transmitted to the pipette, mainly through the ciliary capacitance. Basal activity was near 1.5 spikes s-1. Exposure of apical membrane areas outside of the pipette to permeant analogues of cyclic nucleotides, to forskolin, and to phosphodiesterase inhibitors resulted in a dose-dependent acceleration of spike rate of all cells investigated. Values of 10-20 s-1 were reached. These findings lend further support to the notion that cyclic nucleotides act as second messengers, which cause graded membrane depolarization and thereby a graded increase in spike rate. The stationary spike rate induced by forskolin was very regular, while phosphodiesterase inhibitors caused (in the same cell) an irregular pattern of bursts of spikes. The response of spike rate was phasic-tonic in the case of strong stimulation, even when elicited by inhibitors of phosphodiesterase or by analogues of cyclic nucleotides that are not broken down by the enzyme. Thus, one of the mechanisms contributing to desensitization appears to operate at the level of the nucleotide-induced ciliary conductance. However, desensitization at this level was slow and only partial, in contrast to results obtained with isolated, voltage-clamped receptor cells.
منابع مشابه
Current recording from sensory cilia of olfactory receptor cells in situ. II. Role of mucosal Na+, K+, and Ca2+ ions
Action potential-driven current transients were recorded from sensory cilia and used to monitor the spike frequency generated by olfactory receptor neurons, which were maintained in their natural position in the sensory epithelium. Both basal and messenger-induced activities, as elicited with forskolin or cyclic nucleotides, were dependent on the presence of mucosal Na+. The spike rate decrease...
متن کاملSingle odor-sensitive channels in olfactory receptor neurons are also gated by cyclic nucleotides.
Olfactory transduction is thought to occur by processes that are mainly restricted to the specialized cilia emanating from the distal end of the receptor neuron's single dendrite. The involvement of a cAMP-based second messenger system seems likely, and a cyclic nucleotide-sensitive current has been recorded in patches of membrane from the cilia. However, the small diameter of the cilia and the...
متن کاملWhole-cell recordings and photolysis of caged compounds in olfactory sensory neurons isolated from the mouse.
Gene manipulation and molecular biological techniques for the study of olfaction are well developed in mice, while electrophysiological properties of mouse olfactory sensory neurons have been less extensively investigated. We used the whole-cell voltage-clamp technique in mouse isolated olfactory sensory neurons to investigate both voltage-gated and transduction currents. Voltage-gated currents...
متن کاملPhosphorylation of mammalian olfactory cyclic nucleotide-gated channels increases ligand sensitivity.
In vertebrate olfactory sensory neurons, odorant receptors couple the sensory signal to the synthesis of the second messenger cAMP. Cyclic nucleotide-gated (CNG) channels are activated by binding of cAMP and conduct a depolarizing receptor current that leads to electrical excitation of the neuron. The sensitivity of olfactory CNG channels for cAMP can be significantly reduced by binding of calm...
متن کاملPresynaptic Cyclic Nucleotide-Gated Ion Channels Modulate Neurotransmission in the Mammalian Olfactory Bulb
Cyclic nucleotide-gated channels (CNGCs) on the dendritic cilia of olfactory receptor neurons (ORNs) are critical for sensory transduction in the olfactory system. Do CNGCs also play a role in the axons and/or nerve terminals of ORNs? We find that the cyclic nucleotides cAMP and cGMP can both facilitate and depress synaptic transmission between olfactory nerve fibers and their targets in olfact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 97 شماره
صفحات -
تاریخ انتشار 1991